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Abstract. Parton energy loss effects in heavy-ion collisions are studied with the Monte Carlo program
PQM (Parton Quenching Model) constructed using the BDMPS quenching weights and a realistic collision
geometry. The merit of the approach is that it contains only one free parameter that is tuned to the high-pt

nuclear modification factor measured in central Au–Au collisions at
√

sNN = 200 GeV. Once tuned, the
model is consistently applied to all the high-pt observables at 200 GeV: the centrality evolution of the nuclear
modification factor, the suppression of the away-side jet-like correlations, and the azimuthal anisotropies
for these observables. Predictions for the leading-particle suppression at nucleon–nucleon centre-of-mass
energies of 62.4 and 5500 GeV are presented. The limits of the eikonal approximation in the BDMPS
approach, when applied to finite-energy partons, are discussed.

1 Introduction

High-momentum leading-particle suppression in nucleus–
nucleus (AA) with respect to proton–proton collisions is
regarded as one of the major discoveries at the Relativis-
tic Heavy Ion Collider (RHIC), Brookhaven. In Au–Au
collisions at centre-of-mass energy

√
sNN = 200 GeV per

nucleon–nucleon (NN) pair, the two experiments with high
transverse momentum, pt, capabilities, PHENIX and
STAR, have measured:

– the suppression of single particles at high pt (� 4 GeV)
and central pseudorapidity (|η| � 1), quantified via the
nuclear modification factor

RAA(pt) ≡ 1
〈Ncoll〉centrality class

× d2NAA/dptdη

d2Npp/dptdη
, (1)

which would be equal to unity if the AA collision was a
mere superposition of Ncoll independent NN collisions
(Ncoll scaling); instead, at high pt RAA is found to
decrease from peripheral to central events, down to
≈ 0.2 in head-on collisions [1, 2]; the suppression is
the same for charged hadrons and neutral pions for
pt � 5 GeV;

– the disappearance, in central collisions, of jet-like cor-
relations in the azimuthally-opposite side of a high-pt
leading particle [3];
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– the absence of such effects in d–Au collisions at the
same energy [4, 5].

These observations can be naturally explained in terms
of attenuation (quenching) of energetic partons produced
in initial hard scattering processes, as a consequence of
the interaction with the dense QCD medium expected to
be formed in high-energy heavy-ion collisions. Several the-
oretical works exist on the subject [6–13]. Most of them
implement the idea of parton energy loss due to medium-
induced gluon radiation.

In our Monte Carlo program PQM (Parton Quenching
Model) we combine a recent calculation of parton energy
loss [13] and a realistic description of the collision geom-
etry, which was proven to play an important role [14].
Our approach allows to study and compare to RHIC data
the transverse momentum and centrality dependence of
single-hadron and di-hadron correlation suppressions, as
well as the ‘energy-loss induced’ azimuthal anisotropy of
particle production in non-central collisions. The model
has one single parameter that sets the scale of the en-
ergy loss. Once the parameter is fixed on the basis of the
data at

√
sNN = 200 GeV, we scale it to different ener-

gies assuming its proportionality to the expected volume-
density of gluons, as argued in [15]. We then apply the
same approach to calculate the nuclear modification fac-
tors at intermediate RHIC energy,

√
sNN = 62.4 GeV, and

at LHC energy,
√

sNN = 5.5 TeV. Since we do not include
so-called initial-state effects, such as nuclear modification
of the parton distribution functions and parton intrinsic
transverse-momentum broadening, we restrict our study
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to the high-pt region, above 4–5 GeV at RHIC energies
and above 10 GeV at LHC energy, where these effects are
expected to be small (less than 10% on RAA) [16,17].

2 Parton energy loss and collision geometry

For the calculation of in-medium parton energy loss, we
use the quenching weights in the multiple soft scattering
approximation, which were derived in [13] in the framework
of the ‘BDMPS’ (Baier-Dokshitzer-Mueller-Peigné-Schiff)
formalism [7].

In a simplified picture, an energetic parton produced
in a hard collision undergoes, along its path in the dense
medium, multiple scatterings in a Brownian-like motion
with mean free path λ, which decreases as the medium
density increases. In this multiple scattering process, the
gluons in the parton wave function pick up transverse mo-
mentum kt with respect to its direction and they may
eventually decohere and be radiated.

The scale of the energy loss is set by the characteristic
energy of the radiated gluons

ωc = q̂ L2/2 , (2)

which depends on the in-medium path length L of the
parton and on the BDMPS transport coefficient of the
medium, q̂. The transport coefficient is defined as the aver-
age medium-induced transverse momentum squared trans-
ferred to the parton per unit path length,

q̂ =
〈
k2
t
〉
medium

/
λ .

For a static medium it is time-independent.
Differently from the original BDMPS calculation [7],

in [13] the transverse momentum kt of a radiated gluon is
kinematically bound to be smaller than its energy ω. The
constraint kt < ω is imposed via the dimensionless quantity

R =
2 ω2

c

q̂ L
=

1
2

q̂ L3 , (3)

which relates the scale of ω2, given by the square of the
characteristic energy ω2

c , to that of k2
t , given by q̂ L, as

easily seen from the definition of q̂. The BDMPS case cor-
responds to R → ∞ and it can be recovered by considering
an infinitely-extended medium (L → ∞ for fixed, finite,
ωc) [13].

The two parameters ωc and R determine the energy
distribution of radiated gluons, ω dI/dω. While ωc sets
the scale of the distribution, R controls its shape in the
region 0 < ω � ωc, where the kinematic bound kt < ω
is relevant. In the limit R → ∞ the distribution is of the
form [7]:

lim
R→∞

ω
dI

dω
	 2 αs CR

π

{√
ωc
2ω for ω < ωc ,

1
12

(
ωc
ω

)2 for ω ≥ ωc ,
(4)

where CR is the QCD coupling factor (Casimir factor)
between the considered hard parton and the gluons in the

medium; it is CF = 4/3 if the parton is a quark and CA = 3
if the parton is a gluon.

In the eikonal limit of very large parton initial energy
E (E � ωc), the integral of the radiated-gluon energy
distribution estimates the average energy loss of the parton:

〈∆E〉R→∞ = lim
R→∞

∫ ∞

0
ω

dI

dω
dω ∝ αs CR ωc ∝ αs CR q̂ L2 .

(5)
Note that, due to the steep fall-off at large ω in (4), the
integral is dominated by the region ω < ωc. The aver-
age energy loss 〈∆E〉 is: proportional to αs CR and, thus,
larger by a factor 9/4 = 2.25 for gluons than for quarks;
proportional to the transport coefficient of the medium;
proportional to L2; independent of the parton initial en-
ergy E. It is a general feature of all parton energy loss
calculations [7, 9–11, 13] that the radiated-gluon energy
distribution ω dI/dω does not depend on E. Depending
on how the kinematic bounds are taken into account, the
resulting ∆E is E-independent (BDMPS) [7] or depends
logarithmically on E [9–11]. However, there is always a
stronger intrinsic dependence of the radiated energy on
the initial energy, determined by the fact that the former
cannot be larger than the latter,∆E ≤ E.Within the above
simplified derivation which agrees with the main features
of the BDMPS formalism, this kinematic constraint could
be partially included by truncating the gluon energy dis-
tribution ω dI/dω at the parton energy E. This would give
〈∆E〉 ∝ αs CR

√
ωc

√
min(ωc, E). For E < ωc, we have

〈∆E〉 ∝ αs CR
√

q̂
√

E L: the kinematic constraint turns
the L-dependence from quadratic to linear1 and introduces
a

√
E-dependence. Note that this procedure implements

the constraint ω ≤ E for the emission of one gluon, but it
does not prevent from having ∆E = ω1 + ω2 + . . . > E in
a multiple-gluon emission. A full theoretical treatment of
the finite parton energy case in the BDMPS framework is
at present not available. As we will discuss in Sect. 3, this
introduces significant uncertainties in our results.

The probability P (∆E) that a hard parton radiates the
energy ∆E due to scattering in spatially-extended QCD
matter is known as the quenching weight [18]. In [13] the
weights are calculated on thebasis of theBDMPS formalism
for quarks and gluons as a function of the two parameters
ωc and R and they are given as:

P (∆E; R, ωc) = p0(R) δ(∆E) + p(∆E; R, ωc) . (6)

The discrete weight p0 ≡ p0(R) is the probability to have
no medium-induced gluon radiation and the continuous
weight p(∆E) ≡ p(∆E; R, ωc) is the probability to radiate
an energy ∆E, if at least one gluon is radiated. In this
work we use the quenching weights calculated in [13] with
a fixed value of the strong coupling αs = 1/3. Note that,
since 〈∆E〉 ∝ αs q̂, the dependence on the value of αs can
be largely absorbed in a rescaling of q̂.

It has been shown [13] that a simple scaling law exists,
which translates the radiated-gluon energy distribution for

1 Different approaches [9–11] emphasize the quadratic depen-
dence of energy loss on the size of the medium down to rather
small parton energies.
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an expanding medium with a time-decreasing q̂(t) into an
equivalent distribution for a static medium, with a time-
averaged q̂ = constant, using

q̂ =
2
L2

∫ L+ξ0

ξ0

(ξ − ξ0) q̂(ξ) dξ , (7)

where ξ0 ∼ 10−1 fm � L is the formation time of the
expanding system.

Due to the fact that q̂ and L are two more intuitively
and physically meaningful parameters, in all the previ-
ous applications [13,21,22] the natural (R, ωc)-dependence
of the quenching weights was ‘translated’ into a (q̂, L)-
dependence, via (2) and (3). The standard approach was
to fix a value for the transport coefficient, the same for all
produced partons, and then either use a constant length [13]
or calculate a different length for each parton according to
a description of the collision geometry [21, 22]. However,
this approach is not optimal, because (a) there is no unique
and exact definition of the in-medium path length when
a realistic nuclear density profile is considered, as pointed
out in [21], and (b) the medium density is not constant
over the whole nucleus–nucleus overlap region but rather
decreasing from the centre to the periphery.

In order to overcome these limitations, we adopt a new
approach in which the two parameters ωc and R that deter-
mine the quenching weights are computed on a parton-by-
parton basis, taking into account both the path length and
the density profile of the matter traversed by the parton.

Starting from (2) and using (7) with a space-point
dependent transport coefficient q̂(ξ) and a path-length-
averaged q̂, we define the effective quantity

ωc |effective ≡ 1
2

q̂ L2 =
∫ ∞

0
ξ q̂(ξ) dξ , (8)

which on the r.h.s. does not explicitly depend on L. For a
step-function ‘density’ distribution q̂(ξ) = q̂0 θ(L − ξ), (8)
coincides with (2). Similarly, we define

q̂L |effective ≡
∫ ∞

0
q̂(ξ) dξ (9)

and

R |effective ≡
2

(
ωc |effective)

2

q̂L |effective
. (10)

Using the definitions in (8)–(10)we incorporate the collision
geometry in the calculation of parton energy loss via the
‘local’ transport coefficient q̂(ξ).

3 Leading-particle suppression procedure

Within theperturbativeQCDcollinear factorization frame-
work, the expression for the production of high-pt hadrons
at central rapidity, y = 0, in pp collisions (no energy loss)
reads:

d2σh

dptdy

∣∣∣∣
y=0

=
∑

a,b,j=q,q,g

∫
dxa dxb dzj fa(xa) fb(xb)

× d2σ̂ab→jX

dpt,jdyj

∣∣∣∣
yj=0

Dh/j(zj)
z2

j

, (11)

where fa(b) is the parton distribution function for a parton
of type a(b) carrying the momentum fraction xa(b), σ̂ab→jX

are the partonic hard-scattering cross sections andDh/j(zj)
is the fragmentation function, i.e. the probability distribu-
tion for the parton j to fragment into a hadron h with
transverse momentum pt = zj pt,j . To simplify the nota-
tion, we have dropped the dependence of σ̂ab→jX on

√
s

and of fa(b), σ̂ab→jX and Dh/j on the square of the scale
(momentum transfer) Q2 of the hard scattering, usually
Q2 ∼ p2

t,j . Medium-induced parton energy loss is included
by modifying (11) to:

d2σh
quenched

dptdy

∣∣∣∣∣
y=0

=
∑

a,b,j=q,q,g

∫
dxa dxb d∆Ej dzj fa(xa) fb(xb)

× d2σ̂ab→jX

dpinit
t,j dyj

∣∣∣∣∣
yj=0

δ
(
pinit
t,j − (pt,j + ∆Ej)

)

× P (∆Ej ; Rj , ωc,j)
Dh/j(zj)

z2
j

, (12)

whereP (∆Ej ; Rj , ωc,j) is the energy-loss probability distri-
bution (6) for the parton j (we will explain in the following
how the input parameters R and ωc for a given parton are
calculated).

In PQM we obtain the leading-particle suppression in
nucleus–nucleus collisions by calculating the transversemo-
mentum distributions in (11) and (12) in a Monte Carlo
approach. The ‘event loop’ that we iterate is the following:

1. generation of a parton, quark or gluon, with pt > 3 GeV,
using the PYTHIA event generator [23] in pp mode
with CTEQ 4L parton distribution functions [24]; the
pt-dependence of the quarks-to-gluons ratio is taken
from PYTHIA;

2. determination of the two input parameters, ωc and R,
for the calculation of the quenching weights, i.e. the
energy-loss probability distribution P (∆E);

3. sampling of an energy loss ∆E according to P (∆E)
and definition of the new parton transverse momentum,
pt − ∆E;

4. (independent) fragmentation of the parton to a hadron
using the leading-order Kniehl-Kramer-Pötter (KKP)
fragmentation functions [25].

Steps 2 and 3 are explained in detail in the following para-
graphs. Quenched and unquenched pt distributions are ob-
tained including or excluding the third step of the chain.
The nuclear modification factor RAA(pt) is given by their
ratio. Our hadrons pt distribution without energy loss at√

s = 200 GeV agrees in shape with that measured for
neutral pions in pp collisions by PHENIX [26].
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Fig. 1. Distributions of parton production points in the transverse plane (upper row) and in-medium path length (lower row)
in central, semi-central and peripheral Au–Au collisions. The quantity 〈L〉 is the average of the path length distribution

Determination of ωc and R

We define the collision geometry in the (x, y) plane trans-
verse to the beam direction z, in which the centres of two
nuclei A and B colliding with an impact parameter b have
coordinates (−b/2, 0) and (b/2, 0), respectively. Using the
Glaubermodel [19] to describe the geometry of the collision,
we assume (a) the distribution of parton production points
in the transverse plane and (b) the transverse density of the
medium both to be proportional to the b-dependent prod-
uct TATB(x, y; b) ≡ TA(x, y) × TB(x, y) of the thickness
functions of the two nuclei. The nuclear thickness function
is defined as the z-integrated Wood-Saxon nuclear density
profile: Ti(x, y) ≡ ∫

dz ρWS
i (x, y, z). The parameters of the

Wood-Saxon profile for different nuclei are tabulated from
data [20]. Note that TATB(x, y; b) estimates the transverse
density of binary NN collisions, ρcoll(x, y; b), modulo the
inelastic NN cross section.

We consider only partons produced at central rapidity
and assume that they propagate in the transverse plane
(E ≈ p ≈ pt). For a parton with production point (x0, y0)
and azimuthal propagation direction (cosφ0, sin φ0) (φ0 is
sampled uniformly), we define the ‘local’ transport coeffi-
cient along the path of the parton inside the overlap region
of the nuclei as:

q̂(ξ; b) = k × TATB(x0 + ξ cos φ0, y0 + ξ sin φ0; b) , (13)

where k is a free parameter (in fm) that sets the scale of
the transport coefficient (in GeV2/fm). We compute the
two integrals I0 and I1 ((9) and (8))

In ≡
∫ ∞

0
ξn q̂(ξ; b) dξ , n = 0, 1 , (14)

which determine the energy-loss probability distribution
P (∆E) using2 (see Sect. 2):

ωc = I1 and R = 2 I2
1/I0 . (15)

Our approach allows a natural extension from central to
peripheral nucleus–nucleus collisions: the idea is to fix the
only free parameter, k, in order to describe the measured
nuclear modification factor in central collisions and then
use the impact parameter (b) dependence of the product
TATB(x, y; b).We translate, bymeans of theGlaubermodel,
the experimental definition of the centrality classes in terms
of fractions of the geometrical cross section to a range in
b and, within such range, we sample, for every loop of the
chain reported at the beginning of this section, a value of
b according to the b-dependence of the average number of
binary collisions, d 〈Ncoll〉 /db.

In order to give a synthetic and direct illustration of
our results, we compute, for a given centrality class, the
distributions of the two more customary variables L and
q̂. To this purpose, for every parton we combine ωc and R,
using (2) and (3), to obtain an effective path length and
an effective transport coefficient:

L = R/ωc = 2 I1/I0 and q̂ = 2 ω2
c/(L R) = I2

0/(2 I1) .
(16)

We point out that the resulting definition of L is, as nec-
essary, independent of k. Furthermore, it is the same one
of us (A.D.) used in [21]. Note that q̂ is proportional to
k. In Fig. 1 we report for illustration the distributions of

2 For simplicity, hereafter we drop the subscript “effective”
for ωc and R.
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parton production points in the transverse plane and of
in-medium path lengths, in central (0–10%), semi-central
(20–30%) and peripheral (60–80%) Au–Au collisions. We
will show the q̂ distributions for different centralities in the
next section (in Fig. 4), after extracting the scale k from
the data.

Energy-loss sampling

In the third step of the chain, we use the numerical routine
provided in [13] for fixed αs = 1/3 to obtain the energy-
loss probability distribution for given ωc, R and parton
species (quark or gluon). According to this distribution,
we sample an energy loss ∆E to be subtracted from the
parton transverse momentum. The quenching weights are
calculated in the eikonal approximation, where the energy
of the parton is infinite (E = pt = ∞). Therefore, when
the realistic case of finite-energy partons is considered, a
significant part of the energy-loss probability distribution
P (∆E) lies above the parton energy E, in particular for
large values of ωc and R, or equivalently, of q̂ and L. The
energy loss, under the constraints introduced by the finite
parton energies, is sampled following two approaches:
– Reweighted: truncate P (∆E) at ∆E = E and renor-

malize it to unity by dividing out the factor
∫ E

0 dε P (ε).
The Monte Carlo implementation of this approach is:
sample ∆E from the original P (∆E); if ∆E > E, sam-
ple another ∆E; iterate until a ∆E ≤ E is sampled.

– Non-reweighted: truncate P (∆E) at ∆E = E and add
the δ-function δ(∆E−E)

∫ ∞
E

dε P (ε) to it. The integral
of P is, in this way, maintained equal to one. The cor-
responding Monte Carlo implementation reads: sample
an energy loss ∆E and set the new parton energy to
zero if ∆E ≥ E.
The resulting energy loss is larger in the non-reweighted

case, where partons are ‘absorbed’ by the medium with a

probability
∫ ∞

E
dε P (ε). As we will see in the next section,

the difference can be quite large for low pt and sufficiently-
large transport coefficients. It is argued [13, 27] that the
difference in the values of the observables for the two ap-
proaches illustrates the theoretical uncertainties. Along the
lines of what is done in a recent work [22] developed in
parallel to the present study, we display our model re-
sults as a band delimited by a solid line representing the
non-reweighted case (larger quenching) and a dashed line
representing the reweighted case (smaller quenching). For
the time being, from the theory side both approaches are
highly disputable, while the guidance given by the exper-
imental results will be commented in the conclusions.

4 Results

Nuclear modification factor in Au–Au at
√

sNN = 200 GeV

We start by presenting the results on RAA(pt) in cen-
tral Au–Au collisions at

√
sNN = 200 GeV obtained using

constant in-medium path length and transport coefficient
(left-hand panel of Fig. 2). The data on charged hadrons
and neutral pions from PHENIX [1] and STAR [2] are
reported with combined statistical and pt-dependent sys-
tematic errors shown by the bars on the data points and
pt-independent normalization errors shown by the bars cen-
tred at RAA = 1. The model results are shown by the lines:
for all hadrons, with q̂ = 1 GeV2/fm and L = 6 fm, (solid
line) and for hadrons coming from quarks and from gluons,
separately, with q̂ = 0.75 GeV2/fm and L = 6 fm, (dashed
and dot-dashed lines). In order to compare our results to
those in [13], we use the same parameters and treat the
finite-energy constraint in the non-reweighted case. The
two lines obtained with q̂ = 0.75 GeV2/fm and L = 6 fm
agree with those reported in Fig. 20 of [13]. Since the high-
pt hadron spectrum at RHIC energies is mainly coming
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Fig. 2. RAA(pt) for central Au–Au collisions at
√

sNN = 200 GeV. PHENIX [1] and STAR [2] data are reported with combined
statistical and pt-dependent systematic errors (bars on the data points) and pt-independent systematic errors (bars at RAA = 1).
Model results for constant q̂ and L (left-hand panel) and for constant q̂ and Glauber-based L distribution (right-hand panel)
are reported. In the right-hand plot and in all the following figures the shaded band is delimited by non-reweighted case (solid
line) and reweighted case (dashed line)
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Fig. 3. RAA(pt) for central Au–Au collisions at√
sNN = 200 GeV. The model band is obtained with a

parton-by-parton calculation of ωc and R. The average
transport coefficient is 14 GeV2/fm

from quarks3, which lose less energy than gluons, a larger
q̂ of 	 1 GeV2/fm is necessary to match the measured RAA,
when a realistic quarks-to-gluons ratio is used.

Before moving to the parton-by-parton approach of
PQM outlined in the previous sections, it is very instruc-
tive to show the model results obtained using a constant
transport coefficient and the Glauber-based path-length
distribution for 0–10% central collisions (displayed in the
bottom-left panel ofFig. 1).Wehave touse q̂ 	 15 GeV2/fm
to describe the data with the model band delimited by the
reweighted and non-reweighted cases (right-hand panel of
Fig. 2). When going from a constant L = 6 fm to a realistic
distribution, the transport coefficient has to be increased
by more than one order of magnitude, because there are
many partons with small path lengths of 2–3 fm that can
be quenched only if the medium is very dense. It is in-
teresting to note that RAA is clearly increasing with pt
when a constant length is used, while it is flatter with the
full distribution. This is due to the presence of a long tail
in the L distribution, up to 12 fm: only high-energy par-
tons can fully ‘exploit’ this tail, while low-energy ones are
just completely stopped by the medium after a few fm, so
that the ‘effective’ average length increases with the par-
ton energy. We note that between the non-reweighted and
reweighted approach to the parton finite-energy constraint
there is a difference of about a factor 2 in the magnitude of
RAA, but also a difference in the slope versus pt, which is
slightly positive for non-reweighted and slightly negative
for reweighted.

Using a constant transport coefficient of 15 GeV2/fm
anda realisticLdistribution, themeasuredhadron suppres-
sion can be fairly well described for pt � 5 GeV (at lower pt
we do not apply the model, as initial-state effects and in-
medium hadronization, that we do not include, might play
an important role). Remarkably, our result agrees with that

3 At
√

s = 200 GeV, with CTEQ 4L parton distribution func-
tions [24], gluons dominate the parton pt distribution up to
about 20 GeV. However, since quarks fragment harder than
gluons, high-pt hadrons are mostly produced from quark frag-
mentation. Using KKP fragmentation functions [25], we find
that 75% of the hadrons with pt > 5 GeV come from quark
fragmentation and 25% from gluon fragmentation.

obtained in [22], where the same quenching weights and
a simplified collision geometry with effective nuclei (cylin-
drical density profile instead of the Wood-Saxon we use)
are coupled to a leading-order perturbative QCD calcula-
tion. The RAA band is found to have similar pt-dependence
(rather flat) and width. Numerically, the extracted value of
q̂ is 	 10 GeV2/fm in [22], smaller than our 15 GeV2/fm.
However, this is not an inconsistency, since the value of
αs used in the calculation of the quenching weights is 1/2
in [22] and 1/3 here, and the scale of the energy loss is set
by the product αs q̂ (see (5)).

In order to address the centrality dependence of the
high-pt suppression, we move to the parton-by-parton ap-
proach. For central collisions, the result obtained with the
scale parameter k = 5 × 106 fm, corresponding to parton-
averaged 〈q̂〉 	 14 GeV2/fm, is shown in Fig. 3. The model
band is very similar to that reported in the right-hand
panel of Fig. 2 for q̂ = 15 GeV2/fm and the L distribu-
tion. We now vary the centrality, keeping always the same
scale k. Figure 4 shows the distributions of q̂, calculated
from (16), for different centrality bins. The q̂ variation
within a given bin reflects the different parton production
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Fig. 5. RAA(pt) for different centralities. Data are PHENIX
charged hadrons (closed squares) and π0 (open squares) [1] and
STAR charged hadrons (stars) [2]

points, hence different medium densities encountered. The
rightmost (highest) value refers to partons originating in
the centre of the collision system. The model nuclear mod-
ification factors, compared to PHENIX [1] and STAR [2]
data ranging in centrality from 0–5% to 80–92%, are re-
ported in Fig. 5. We note that the theoretical uncertainty
band is narrower for semi-central and peripheral collisions,
where, due to the smaller size and density of the medium,
the probability to have ∆E > E in the quenching weights
becomes marginal.

Our results follow the decrease of the measured RAA
with increasing centrality. This is more conveniently vi-
sualized in the left-hand panel of Fig. 6, where we show
the average RAA in the range 4.5 < pt < 10 GeV plot-
ted as a function of the number of participant nucleons,

Npart, obtained from the Glauber model. Data are taken
from [1,2].

Back-to-back correlations

By generating pairs of back-to-back partons, we can study
the centrality dependence of the disappearance of the away-
side jet. This effect is usually quantified using the correla-
tion strength [28]

DAA =
∫ pt,1

pmin
t

dpt,2

∫
∆φ>∆φmin

d∆φ
d3σh1h2

AA /dpt,1dpt,2d∆φ

dσh1
AA/dpt,1

(17)
for an associated hadron h2 with transverse momentum
pt,2 in the opposite azimuthal direction of a trigger hadron
h1 with transverse momentum pt,1. The STAR data [3] are
for trigger particles with 4 < pt,1 < 6 GeV and associated
particles with pt,2 > pmin

t = 2 GeV and pt,2 < pt,1, with
∆φ ≡ |φ1 −φ2| > ∆φmin = 130◦. The correlation strength
is then corrected for combinatorial background and az-
imuthal anisotropy of particle production in non-central
collisions [3]. The correlation strength in nucleus–nucleus
relative to pp collisions defines the suppression factor:

IAA =
DAA

Dpp
. (18)

We generate pairs of partons with the same initial pt and
separated in azimuth by ∆φ = 180◦. Then, we calculate ωc
and R for each parton and apply energy loss and fragmen-
tation. We count as trigger particle every hadron h1 with
4 < pt,1 < 6 GeV and as associated away-side particle the
other hadron h2 of the pair, if its transverse momentum is
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Fig. 6. Average RAA in the range 4.5 < pt < 10 GeV [1, 2] (left-hand panel) and IAA, defined in the text, for the away-side
jet [3] (right-hand panel) as a function of collision centrality, expressed by the number of participants, Npart. For RAA, the error
bars are combined statistical and pt-dependent systematic errors and the bands centred at RAA = 1 are the pt-independent
normalization errors for PHENIX (dashed) and STAR (dot-dashed). For IAA, the statistical (bars) and systematic (ticks) errors
are shown
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in the range 2 GeV < pt,2 < pt,1. We define:

IAA =

(
Nassociated

N trigger

)
with energy loss(

Nassociated

N trigger

)
w/o energy loss

. (19)

The right-hand panel of Fig. 6 shows our result for IAA
versus Npart, compared to STAR measurements in Au–Au
collisions at

√
sNN = 200 GeV, with statistical (bars) and

systematic (ticks) errors, from [3]. The magnitude and cen-
trality dependence of the suppression are described without
changing the scale parameter value we extracted from RAA
in central collisions.

Azimuthally-differential observables

For non-central collisions, the nucleus–nucleus overlap pro-
file is asymmetric with respect to the event-plane direction,
defined by the line that contains the centres of the two col-
liding nuclei and the impact parameter vector b, in the
transverse plane. The asymmetry is visible in the upper
row of Fig. 1, where the event-plane direction is parallel to
the x axis. Consequently, the in-medium path length is, on
average, larger for partons propagating in the out-of-plane
direction (perpendicular to the event plane) than for par-
tons propagating in the in-plane direction (parallel to the
event plane).

Due toparton energy loss, the asymmetry in themedium
geometry should be reflected in the azimuthal distribution
dN/dφ of high-pt hadrons with respect to the event plane,
φ = 0◦. We quantify this effect by calculating:
– the azimuthal anisotropy, as given by the second Fourier

coefficient of the dN/dφ distribution, v2 [29]; we ob-
tain the value of v2 for hadrons in a given pt range by
fitting their azimuthal distribution to the form a · (1 +
2 v2 cos 2φ);

– Rφ0
AA(pt), the nuclear modification factor for hadrons in

an azimuthal cone of 45◦ centred at the angle φ0 with
respect to the event plane; we use φ0 = 0◦ (in-plane),
φ0 = 90◦ (out-of-plane) and φ0 = 45◦ (intermediate);

– Iφ0
AA (away side), the nucleus–nucleus away-side corre-

lation strength relative to pp, in the three azimuthal
regions defined for Rφ0

AA.

The scale parameter k is again kept to the value that
allows to match the measured RAA in central collisions at√

sNN = 200 GeV.
Figure 7 (left-hand panel) shows the model results for

v2 as a function of the transverse momentum, for central
(0–10%, Npart ≈ 320) and non-central (20–60%, Npart ≈
100) Au–Au collisions, compared to non-central experi-
mental measurements on charged hadrons obtained by
PHENIX [30] and STAR (preliminary) [31] using three dif-
ferent methods: reaction plane reconstruction (v2 {RP}),
2-particle correlations (v2 {2}) [32] and 4-particle correla-
tions (v2 {4}) [32]. In the right-hand panel of the same
figure, the v2 centrality dependence from the model is
compared to charged hadrons data from PHENIX [30],
at pt ≈ 4.5 GeV, and from STAR (preliminary) [33], at
pt ≈ 6 GeV.

The measured azimuthal anisotropy at intermediate
transverse momenta of 4–6 GeV is systematically larger
than that generated by parton energy loss in our model,
indicating the presence of non-negligible collective flow ef-
fects in this momentum range. However, the preliminary
STAR measurements at higher pt, shown in the left-hand
panel of Fig. 7, suggest that v2 might go down to values
compatible with those expected from parton energy loss
in an azimuthally-asymmetric medium. High-pt data with
larger statistics from the recent RHIC Run-4 will allow to
clarify this point. We note that our maximum v2 of 0.05–
0.10, for Npart ≈ 100, is similar to that obtained in other
parton energy loss [28] or absorption [14] calculations.
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The azimuthal variation of the nuclear modification
factor and of the away-side correlations is illustrated in
Fig. 8. For RAA (left-hand panel), we show the two ratios
R90

AA/R0
AA (out-of-plane/in-plane) and R45

AA/R0
AA (inter-

mediate/in-plane), averaged over the range 4.5 < pt <
10 GeV, as a function of collision centrality (Npart). As for
v2, the asymmetry is maximum at Npart ≈ 100, where the
model gives for RAA a ratio out-of-plane/in-plane of ≈ 0.75.
Similarly, for the away-side correlation IAA (right-hand
panel), we show the two ratios I90

AA/I0
AA (out-of-plane/in-

plane) and I45
AA/I0

AA (intermediate/in-plane). The condi-
tions on the near-side trigger and the associated away-side
particles are the same as for Fig. 6. At Npart ≈ 100–150
the model predicts an away-side correlation strength of
about 30% lower for the out-of-plane relative to the in-
plane direction. Both effects are rather strong and their
measurement at RHIC would be of great interest.

Nuclear modification factor at
√

sNN = 62.4 GeV

The recent RHIC run with Au–Au collisions at
√

sNN =
62.4 GeV allows the measurement of the nuclear modifi-
cation factor for charged hadrons and neutral pions up to
transverse momenta of 7–8 GeV. We estimate the leading-
particle suppression due to parton energy loss at this lower
centre-of-mass energy by using the proportionality of the
transport coefficient q̂ to the initial volume-density of glu-
ons ngluons [15]. In the saturation model [34], for collisions
of two nuclei with mass number A at energy

√
sNN, such

density is estimated to scale as

ngluons ∝ A0.383 (
√

sNN)0.574
. (20)

This gives ngluons
Au−Au, 62.4 GeV 	 0.5×ngluons

Au−Au, 200 GeV. Apply-
ing this scaling to the value of the k parameter, see (13),
found in our model for central collisions at 200 GeV, we
obtain a transport coefficient distribution with mean value
〈q̂〉 	 7 GeV2/fm in central collisions at 62.4 GeV.
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Fig. 9. Model results for RAA(pt) in central and semi-peripheral
Au–Au collisions at

√
sNN = 62.4 GeV. The preliminary π0 data

(0–10% centrality class) from PHENIX [35] are also shown; the
pp reference is the PHENIX pp → π0+X parameterization, the
error bars on the data points are the combined statistical and
pt-dependent systematic errors and the bar centred at RAA = 1
is the systematic error on the normalization

We generate hard partons using PYTHIA at
√

s =
62.4 GeV and use the procedure described in Sect. 3. The
results are shown inFig. 9, alongwithpreliminarydata from
PHENIX [35] for neutral pions up to pt ≈ 7 GeV in 0–10%
central collisions. For pt � 5 GeV, we find RAA 	 0.3, in
accordance with the data, in central (0–10%) and 	 0.7 in
semi-peripheral (40–50%) collisions. These values are not
much larger than those at

√
sNN = 200 GeV. At smaller√

sNN, although the transport coefficient is reduced by a
factor of 2, the increased softness of the parton transverse
momentum distribution determines a stronger effect of en-
ergy loss on the nuclear modification factor. Prior to the
release of the preliminary PHENIX data, several predic-
tions were published [36–38]. While the magnitude and
pt-dependence of RAA in [36] seem to agree with our result
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Fig. 10. RAA(pt) for different centrality classes
in Pb–Pb collisions at

√
sNN = 5.5 TeV and

in Au–Au collisions at
√

sNN = 200 GeV. For
comparison, the prediction for LHC presented
in [17] (Vitev–Gyulassy) is also shown

(although RAA is presented only up to pt = 6 GeV there),
the predictions in [37, 38] show a different trend with pt:
RAA for pt � 5 GeV is decreasing with increasing pt, down
to values of about 0.2 at pt 	 16 GeV.

Extrapolation to the LHC

To compute the expected nuclear modification factor in
Pb–Pb collisions at the LHC we use PQM with the parton
pt distribution extracted from PYTHIA at

√
s = 5.5 TeV.

Scaling the k parameter according to (20), we have
ngluons

Pb−Pb,5.5 TeV 	 7×ngluons
Au−Au,200 GeV, i.e. 〈q̂〉	 100 GeV2/fm.

We report inFig. 10 the expected transverse-momentum
dependence of RAA in the range 10 < pt < 90 GeV for
different centralities (the results at

√
sNN = 200 GeV are

shown as well). In the most central collisions RAA is of
≈ 0.15, independent of pt. This value is about a factor of
2 smaller than that measured at

√
sNN = 200 GeV. Our

result for the LHC is in agreement, both in the numerical
value and in the pt-dependence, with that obtained in [22]
using the same quenching weights and the same αs 〈q̂〉,
while it is quite different from that calculated in [17] as-
suming an initial gluon rapidity density dNgluons/dy in the
range 2000–3500. For comparison, we have reported in the
same figure the result of [17]: there, RAA is predicted to
rise significantly at large transverse momenta, from 0.1–0.2
at 20 GeV to 0.4–0.6 at 90 GeV. We note that the differ-
ence between the two results is not likely to be due to
the fact that we do not include nuclear (anti-)shadowing
effects, since these are expected to determine a rather pt-
independent increase of RAA of about 10% in the range
25 < pt < 100 GeV [16,17].

5 Discussion

High-energy partons from the surface

The centrality dependence of leading-hadron suppression
andback-to-backdi-hadron correlations iswell describedby

our model, in which the centrality evolution is purely given
by collision geometry. This suggests that the high-opacity
medium formed in Au–Au collisions at

√
sNN = 200 GeV

has initial size and density that decrease from central to
peripheral events according to the overlap profile of the
colliding nuclei, TA(x, y) × TB(x, y). At the centre of the
medium the density is maximum and partons crossing this
region are likely to be completely absorbed. Only partons
produced in the vicinity of the surface and propagating
outward can escape from the medium with sufficiently-
high energy to fragment into hadrons with more than few
GeV in pt. Such an ‘emission from the surface’ scenario was
pictured also in a recent work [14], where the centrality de-
pendence of RAA and IAA could be reproduced by a simple
model of parton absorption whose only physical ingredient
was a Glauber-based nucleus–nucleus overlap profile.

The region from which partons escape from the medium
is visualized by plotting the distribution of production
points for partons that give a high-energyhadron (phadron

t >
5 GeV). This distribution for central Au–Au collisions at
62.4 and 200 GeV and Pb–Pb collisions at 5.5 TeV is shown
in Fig. 11, along with the corresponding path length dis-
tribution. The ‘thickness’ of the escape region is of order
2–3 fm and it decreases as

√
sNN increases from intermediate

RHIC energy to LHC energy.
It is interesting to try to apply a simple toy model: all

partons with a path length L smaller than a maximum
length Lmax

escape escape from the medium, the others are ab-
sorbed. We define the path length probability distribution
P(�) as the probability distribution for a generic parton to
have a path length �. The distributions in the lower row of
Fig. 1 are examples of P(�) for different centrality classes
in Au–Au. P(�) is normalized to unity,

∫ ∞
0 d�P(�) = 1,

and, thus, the integral
∫ L

0 d�P(�) gives the fraction of par-
tons with path length smaller than L. Using the measured
(or expected) RAA for given collision energy and central-
ity, Lmax

escape can be estimated as
∫ Lmax

escape
0 d�P(�) = RAA.

At
√

sNN = 200 GeV, we find Lmax
escape ≈ 2.5 fm from cen-

tral (0–5%) to semi-peripheral collisions (40–60%): in this
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wide centrality range the simultaneous decrease of sys-
tem density and volume results in energetic partons being
emitted from a shell of constant thickness. For more pe-
ripheral collisions the system becomes very diluted and
partons can escape from the whole volume (Lmax

escape ≈ 3.5–
4 fm ≈ system size). In central collisions at different en-
ergies, we find Lmax

escape ≈ 3 fm at
√

sNN = 62.4 GeV and
Lmax

escape ≈ 1.5 fm at
√

sNN = 5.5 TeV (LHC).
Remarkably, this absorption toy model allows to recon-

cile the magnitude of single-particle and away-side correla-

tion suppressions measured in central Au–Au at 200 GeV,
as illustrated in Fig. 12. The figure shows the distribu-
tion L1 versus L2 for pairs of partons (1 and 2) generated
back-to-back. Parton pairs produced in the middle of the
overlap profile populate the central part of the distribu-
tion (L1 ∼ L2), while pairs produced closer to the surface
are in the two tails (L1 � L2 or L1 � L2). We report
the two lines L1 = Lmax

escape and L2 = Lmax
escape, which di-

vide the distribution in three parts: (a) for L1,2 > Lmax
escape

both partons are absorbed, (b) for L1(2) < Lmax
escape and

L2(1) > Lmax
escape only one of the two partons escape the

medium, and (c) for L1,2 < Lmax
escape both partons escape.

With the value Lmax
escape = 2.5 fm, extracted from the mea-

sured RAA, the third part of the distribution (c) is empty: it
never happens that both partons can escape, in agreement
with the value compatible with zero measured by STAR
for IAA.

Energy-loss saturation

The strong parton absorption suggests that we are in a sat-
uration regime of the energy loss, ∆E/E → 1, as almost
all hard partons produced in the inner core are thermal-
ized (∆E/E = 1) before escaping the medium. Indeed,
the average relative energy loss, 〈∆E/E〉 (from the Monte
Carlo), shown versus parton energy E in Fig. 13 for central
collisions at

√
sNN = 200 and 5500 GeV, is almost satu-

rating to unity for gluons (70–80%) and it is very large
also for quarks (50–70%). Due to the fact that gluons
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Fig. 13. Average relative energy loss versus
parton energy for quarks and gluons in central
collisions at RHIC and LHC energies for the
non-reweighted and reweighted cases
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Fig. 14. Average RAA in the range 4.5 < pt < 10 GeV (left-hand panel) and IAA for the away-side jet (right-hand panel) as a
function of the number of participants. The data points and errors are the same as in Fig. 6. Here the model results obtained
using either zero or maximum energy loss, as explained in the text, (labelled ‘only P (∆E = 0)’, lighter band) are shown together
with those obtained with the standard procedure (labelled ‘full P (∆E)’, darker band)

are closer to energy-loss saturation than quarks, the ra-
tio of gluon to quark 〈∆E/E〉 is much smaller than the
Casimir ratio CA/CF = 2.25 expected from (5). Further-
more, since absorption (and, hence, saturation) is more sig-
nificant for small-E partons, or, in otherwords, large-E par-
tons can exploit larger energy losses, the genuine BDMPS
∆E/E ∝ 1/E is replaced by a rather E-independent ef-
fective ∆E/E. It is important to point out here that the
pt-independent nuclear modification factor obtained in our
model, in agreement with RHIC data above ≈ 5 GeV, is a
natural consequence of this saturation scenario.

As the average relative energy loss is close to one, at
least for the non-reweighted case, we are not very sensi-
tive to the shape of the continuous part of the quenching
weights in (6), p(∆E). Rather, the energy-loss probabil-
ity is dominated by the discrete part, the probability to
have no medium-induced radiation, p0. In order to confirm
this statement, we repeat the calculation with a modified
PQM version: in the quenching procedure we consider the
parton as absorbed whenever the sampled energy loss ∆E
is larger than zero. That is, we have either no energy loss
or maximum energy loss. Also in this case, we consider
the two finite-energy constraint methods, non-reweighted
and reweighted. We note that the ‘survival’ probability is
p0 for the non-reweighted case and p0/

∫ E

0 dε P (ε) for the

reweighted case. In Fig. 14 we report, as a function of the
number of participants, RAA and IAA, calculated with this
modified quenching procedure, labelled ‘only P (∆E = 0)’,
and the same value of k we used for the standard procedure.
For the most central collisions, down to Npart 	 150, the
agreement with data is very good, whereas deviations are
clearly visible in RAA when going to semi-peripheral and
peripheral collisions, Npart < 150. This confirms that, in
central collisions, partons are either completely absorbed
or coming from the surface, whereas in non-central colli-
sions the shape of the energy-loss probability distribution
plays a role in the description of the data.

6 Conclusions

Most of the present high-momentum observables have been
studied using thePartonQuenchingModel (PQM) inwhich
hard partons are generated with PYTHIA [23], medium-
modified with the quenching weights [13], and hadronized
independently viaKKP fragmentation functions [25].Using
a Glauber approach with Wood-Saxon density profiles of
the colliding nuclei, the chain takes into account the realistic
spatial distribution of hard parton production points and
the amount and density of matter traversed by each parton.
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The results show that, if parton production coordinates
and realistic density profiles are taken into account, the en-
suing transport coefficient has to acquire very large values:
〈q̂〉 	 14 GeV2/fm in central Au–Au collisions at

√
sNN =

200 GeV. Note that we used a relatively small value of αs
(1/3). Due to the scaling ∆E ∝ αs q̂, if larger values (e.g.
1/2) were used, the extracted transport coefficient would
be smaller, but still quite large, 〈q̂〉 	 10 GeV2/fm [22].
In [22], it is pointed out that such q̂ values do not nec-
essarily imply unexpectedly large medium initial energy
densities (a few hundreds GeV/fm3), as one obtains in the
hypothesis of an ideal plasma whose constituents interact
perturbatively with the hard partons [15], but rather sug-
gest that the medium might interact with the hard partons
much stronger than perturbatively expected. Technically,
the large extracted q̂ values present a yet unsolved the-
oretical problem, since the eikonal approach used in the
theory cannot be flawlessly extended to finite (low) parton
energies. In the situation, we presented two possibilities:

1. the theoretical treatment is applied regardless of the
obvious problem for low-energy partons, which are com-
pletely absorbed with a rather large probability (non-
reweighted approach);

2. a reweighting procedure is performed in order to pre-
vent the complete parton absorption in the medium
(reweighted approach).

Our calculations contain only one free parameter that
was adjusted to the measured nuclear modification factor in
central collisions at

√
sNN = 200 GeV at RHIC. The same

parameter was then employed to extract the centrality
dependence of the nuclear modification factor for hadrons
and di-hadrons, and the azimuthal anisotropy parameter
v2. Some of these observables were simulated for

√
sNN =

62.4 GeV and 5.5 TeV collisions, scaling only the expected
medium densities.

When comparing to experimental results, we observe a
tendency for the outright application of the theory, i.e. non-
reweighted approach, to fit the RAA and IAA centrality
dependence reasonably well and, in general, better than
the reweighted case. The calculated value of v2 lies about 2
standard deviations below the experimental data at pt 	 4–
6 GeV, suggesting the presence of collective elliptic flow
effects up to these pt values; upcoming measurements with
higher statistics should be able to give a definitive an-
swer whether elliptic flow still subsists at momenta larger
than 7–8 GeV or not. We have also shown some predictions
for the azimuthal variation of leading-particle suppression
and jet-like correlations. We note that as a consequence
of the azimuthal anisotropy for high-pt particles simulated
in the present approach the low-energy particles ‘radiated’
by quenched partons might contribute a v2 of the ‘oppo-
site sign’ in the low-pt region. Thus, the parton quenching
at the LHC could produce an apparent decrease of the
elliptic flow at low pt with respect to the predictions of
hydrodynamic calculations.

We observe that the reweighting ‘simulates’ a softer
transport coefficient, i.e. it de facto allows for some partons
to be emitted from the away side, while a simple geomet-
rical toy model excludes the away-side partons once the

model has been tuned on the measured RAA. Furthermore,
in the reweighted approach, RAA(pt) is larger towards low
transverse momenta, see e.g. Fig. 3, because the survival
probability for a parton with energy E, p0/

∫ E

0 dε P (ε),
increases when E decreases. This feature appears to be
unphysical, or at least non-intuitive. Clearly, the full treat-
ment of the difficulties encountered here should be tackled
theoretically in a more complete way.

The inspection of the production-point distribution for
energetic partons escaping the medium and of the average
relative energy loss suffered by quarks and gluons in central
collisions at top RHIC energy depicts the dense medium
in the nuclear overlap region as a black disk: either the
partons are absorbed or they escape from a thin shell close
to the surface.

The present model, applied to the LHC, gives the in-
teresting result that the RAA value is essentially constant
with pt, and very low, up to the highest parton energies. As
shown in Fig. 10, this prediction differs substantially from
others obtained for the LHC [17]. Namely, in our model
the black disk effect, which requires a large transport co-
efficient, extends the strong suppression up to very high
transverse momenta. This scenario would amount to de-
crease the number of high-energy jets by almost an order
of magnitude and it should be considered in the future
planning of experimental studies.
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9. M. Gyulassy, P. Lévai and I. Vitev, Nucl. Phys. B 571,
197 (2000) [arXiv:hep-ph/9907461]; Phys. Rev. Lett. 85,
5535 (2000) [arXiv:nucl-th/0005032]; Nucl. Phys. B 594,
371 (2001) [arXiv:nucl-th/0006010]

10. J. Osborne and X.N. Wang, Nucl. Phys. A 710, 281 (2002)
[arXiv:hep-ph/0204046]

11. B.W. Zhang and X.N. Wang, Nucl. Phys. A 720, 429
(2003) [arXiv:hep-ph/0301195]

12. U.A. Wiedemann, Nucl. Phys. B 588, 303 (2000)
[arXiv:hep-ph/0005129]

13. C.A. Salgado and U.A. Wiedemann, Phys. Rev. D 68,
014008 (2003) [arXiv:hep-ph/0302184]

14. A. Drees, H. Feng and J. Jia, arXiv:nucl-th/0310044
15. R. Baier, Nucl. Phys. A 715, 209 (2003) [arXiv:hep-

ph/0209038]
16. K.J. Eskola and H. Honkanen, Nucl. Phys. A 713, 167

(2003) [arXiv:hep-ph/0205048]
17. I. Vitev and M. Gyulassy, Phys. Rev. Lett. 89, 252301

(2002) [arXiv:hep-ph/0209161]
18. R. Baier, Yu.L. Dokshitzer, A.H. Mueller and D. Schiff,

JHEP 0109, 033 (2001) [arXiv:hep-ph/0106347]
19. R.J. Glauber and G. Matthiae, Nucl. Phys. B 21, 135

(1970)
20. C.W. deJager, H. deVries and C. deVries, Atom. Data

Nucl. Data Tabl. 14, 485 (1974)
21. A. Dainese, Eur. Phys. J. C 33, 495 (2004) [arXiv:nucl-

ex/0312005]
22. K.J. Eskola, H. Honkanen, C.A. Salgado and U.A. Wiede-

mann, arXiv:hep-ph/0406319
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